设为首页 电子邮箱 联系我们

本刊最新招聘信息请见“通知公告”!  本刊投稿系统试运行中,欢迎投稿!如投稿有问题,可直接将稿件发送至zgyy8888@163.com

 

主管单位:中华人民共和国   

国家卫生健康委员会

主办单位:
总编辑:
杨秋

编辑部主任:吴翔宇

邮发代号:80-528
定价:28.00元
全年:336.00元
Email:zgyy8888@163.com
电话(传真):010-64428528;
010-64456116(总编室)

                  

2023 年第 12 期 第 18 卷

糖尿病肾病合并心血管疾病的影响因素分析及风险预测模型构建

Influencing factors analysis and risk prediction model construction of diabetic nephropathy with cardiovascular disease

作者:路曼周小春刘芳香王俭勤

英文作者:Lu Man Zhou Xiaochun Liu Fangxiang Wang Jianqin

单位:兰州大学第二医院肾内科,兰州730030

英文单位:Department of Nephrology Lanzhou University Second Hospital Lanzhou 730030 China

关键词:糖尿病肾病;心血管疾病;影响因素;预测模型

英文关键词:Diabeticnephropathy;Cardiovasculardiseases;Influencingfactors;Predictionmodel

  • 摘要:
  • 目的  分析糖尿病肾病(DN)合并心血管疾病的影响因素并建立风险预测模型。方法  回顾性收集2015年1月至2022年6月在兰州大学第二医院住院的1 208例DN患者的临床资料,明确心血管疾病在DN中的分布特征。根据是否合并心血管疾病分为合并组(505例)和未合并组(703例),采用多因素Logistic回归分析法分析DN合并心血管疾病的影响因素。构建风险预测模型,并采用受试者工作特征(ROC)曲线评估该模型的预测效能,Hosmer-Lemeshow拟合优度检验评估校准能力。结果  1 208例DN合并心血管疾病者505例(患病率为41.8%),慢性肾脏病1~5期患者中心血管疾病患病率分别为29.9%(141/472)、42.3%(203/480)、62.8%(118/188)、64.7%(33/51)、58.8%(10/17),各分期间的心血管疾病患病率比较差异有统计学意义(P<0.001)。多因素Logistic回归分析结果显示,高龄、高血压病、颈动脉斑块、血尿酸和甲状旁腺激素是心血管疾病发生的危险因素,血白蛋白是心血管疾病发生的保护性因素(均P<0.05)。构建DN发生心血管疾病的风险预测模型,风险预测模型的ROC曲线下面积为0.787(95%置信区间:0.762~0.812,P<0.001),以约登指数最大值0.442选取最佳截断值44.3%,此时,ROC曲线的敏感度为74.3%,特异度为70.0%。Hosmer-Lemeshow 检验结果显示该模型预测值与实际情况有较好的拟合度(χ2=5.896,P=0.659)。结论  高龄、高血压病、颈动脉斑块、血白蛋白、血尿酸和甲状旁腺激素是DN患者合并心血管疾病的影响因素。基于上述影响因素构建的DN并发心血管疾病的风险预测模型具有较好的预测价值。

  • Objective To analyze the influencing factors of diabetic nephropathy (DN) with cardiovascular disease and to construct a risk prediction model. Methods The clinical data of 1 208 patients with DN hospitalized in Lanzhou University Second Hospital from January 2015 to June 2022 were retrospectively collected to clarify the distribution characteristics of cardiovascular disease in DN. Patients were divided into combined group(505 cases) and non-combined group(703 cases) according to whether they had cardiovascular disease. The influencing factors of combined cardiovascular diseases in DN were analyzed by multivariate Logistic regression analysis. A risk prediction model was constructed, receiver operating characteristic(ROC) curves were used to assess the predictive efficacy of the model, and Hosmer-Lemeshow goodness of fit test was used to assess the calibration ability. Results  Among 1 208 patients with DN, 505 patients(41.8%) had cardiovascular disease. The prevalence of central vascular disease in patients of chronic kidney disease 1-5 stages were 29.9%(141/472), 42.3%(203/480), 62.8%(118/188), 64.7%(33/51), and 58.8%(10/17), respectively, and the differences were statistically significant comparing the prevalence of cardiovascular disease in each stage(P<0.001). The results of multivariate Logistic regression analysis showed that advanced age, hypertension, carotid plaque, blood uric acid and parathyroid hormone were risk factors for the development of cardiovascular disease, and blood albumin was a protective factor for the development of cardiovascular disease(all P<0.05). The risk prediction model for the development of cardiovascular disease in DN was constructed. The area under the ROC curve of the risk prediction model was 0.787(95% confidence interval: 0.762-0.812, P<0.001), and the optimal cut-off value of 44.3% was selected with the maximum value of the Youden index of 0.442, at which the sensitivity of the ROC curve was 74.3% and the specificity was 70.0%. The Hosmer-Lemeshow test showed a good fit between the predicted value of the model and the actual situation (χ2=5.896, P=0.659). Conclusions  Advanced age, hypertension, carotid plaque, blood albumin, blood uric acid and parathyroid hormone are the influencing factors of DN patients with cardiovascular disease. The risk prediction model of DN combined with cardiovascular disease constructed based on the above influencing factors has a good predictive value.

copyright
地址:北京市朝阳区安贞路2号首都医科大学附属北京安贞医院北楼二层
电话:010-64456116 传真:010-64428528 邮编:100029 Email: zgyy8888@163.com
网址: 京ICP备2020043099号-3

当您在使用本网站投稿遇到困难时,请直接将稿件投送到编辑部邮箱zgyy8888@163.com。







安卓


苹果

关闭
Baidu
map